Home >

news ヘルプ

論文・著書情報


タイトル
和文: 
英文:Lasso Penalized Model Selection Criteria for High-Dimensional Multivariate Linear Regression Analysis 
著者
和文: 片山翔太, 伊森 晋平.  
英文: Shota Katayama, Shinpei Imori.  
言語 English 
掲載誌/書名
和文: 
英文:Journal of Multivariate Analysis 
巻, 号, ページ Vol. 132        Page 138-150
出版年月 2014年8月23日 
出版者
和文: 
英文:Elsevier 
会議名称
和文: 
英文: 
開催地
和文: 
英文: 
DOI https://doi.org/10.1016/j.jmva.2014.08.002
アブストラクト This paper proposes two model selection criteria for identifying relevant predictors in the high-dimensional multivariate linear regression analysis. The proposed criteria are based on a Lasso type penalized likelihood function to allow the high-dimensionality. Under the asymptotic framework that the dimension of multiple responses goes to infinity while the maximum size of candidate models has smaller order of the sample size, it is shown that the proposed criteria have the model selection consistency, that is, they can asymptotically pick out the true model. Simulation studies show that the proposed criteria outperform existing criteria when the dimension of multiple responses is large.

©2007 Institute of Science Tokyo All rights reserved.