Home >

news ヘルプ

論文・著書情報


タイトル
和文: 
英文:Random matrix theory of singular values of rectangular complex matrices I: Exact formula of one-body distribution in fixed-trace ensemble 
著者
和文: 足立聡.  
英文: Satoshi ADACHI.  
言語 English 
掲載誌/書名
和文: 
英文:Annals of Physics 
巻, 号, ページ 324    11    2278-2358
出版年月 2009年11月 
出版者
和文: 
英文: 
会議名称
和文: 
英文: 
開催地
和文: 
英文: 
DOI http://dx.doi.org/10.1016/j.aop.2009.04.007
アブストラクト The fixed-trace ensemble of random complex matrices is the fundamental model that excellently describes the entanglement in the quantum states realized in a coupled system by its strongly chaotic dynamical evolution [see H. Kubotani, S. Adachi, M. Toda, Phys. Rev. Lett. 100 (2008) 240501]. The fixed-trace ensemble fully takes into account the conservation of probability for quantum states. The present paper derives for the first time the exact analytical formula of the one-body distribution function of singular values of random complex matrices in the fixed-trace ensemble. The distribution function of singular values (i.e. Schmidt eigenvalues) of a quantum state is so important since it describes characteristics of the entanglement in the state. The derivation of the exact analytical formula utilizes two recent achievements in mathematics, which appeared in 1990s. The first is the Kaneko theory that extends the famous Selberg integral by inserting a hypergeometric type weight factor into the integrand to obtain an analytical formula for the extended integral. The second is the Petkovšek–Wilf–Zeilberger theory that calculates definite hypergeometric sums in a closed form.

©2007 Institute of Science Tokyo All rights reserved.