In running cars or trains, passengers often feel sleepy. Our study focuses on this physiological phenomenon. If a machine can reproduce this phenomenon, it is feasible to put a person, such as an insomnia patient or an infant, to sleep without any harmful effects. The results of our previous study suggest that low-frequency vibration induces sleep. This report describes a new mechanical bed for inducing sleep and discusses the effects of different vibration conditions. The new bed has two active DOFs in the vertical and horizontal directions to examine the anisotropy of sensation. The bed includes three main parts: a vertical driver unit, a horizontal driver unit, and a unique 2-DOF counterweight system to reduce driving force and noise. With regard to motion accuracy, the maximum motion error in the vertical direction lifting 75 kg load was only 0.06 mm with a 5.0 mm amplitude of a 0.5 Hz sinusoidal wave. The results of excitation experiments with 10 subjects showed a significant difference in sleep latency between the conditions with vibration and without vibration. Furthermore, the average latency with insensible vibration (amplitude = 2.4 mm) was shorter than that with sensible vibration (amplitude = 7.5 mm). These results suggest the ability of appropriate vibration to induce sleep.