Home >

news ヘルプ

論文・著書情報


タイトル
和文: 
英文:I-vector Transformation Using Conditional Generative Adversarial Networks for Short Utterance Speaker Verification 
著者
和文: ZHANG Jiacen, 井上 中順, 篠田 浩一.  
英文: Jiacen Zhang, Nakamasa Inoue, Koichi Shinoda.  
言語 English 
掲載誌/書名
和文: 
英文:Proc. Interspeech 2018 
巻, 号, ページ         pp. 3613-3617
出版年月 2018年9月4日 
出版者
和文: 
英文:ISCA 
会議名称
和文: 
英文:Interspeech 2018 
開催地
和文:ハイデラバード 
英文:Hyderabad 
ファイル
公式リンク https://www.isca-speech.org/archive/Interspeech_2018/abstracts/1680.html
 
DOI https://doi.org/10.21437/Interspeech.2018-1680
アブストラクト I-vector based text-independent speaker verification (SV) systems often have poor performance with short utterances, as the biased phonetic distribution in a short utterance makes the extracted i-vector unreliable. This paper proposes an i-vector compensation method using a generative adversarial network (GAN), where its generator network is trained to generate a compensated i-vector from a short-utterance i-vector and its discriminator network is trained to determine whether an i-vector is generated by the generator or the one extracted from a long utterance. Additionally, we assign two other learning tasks to the GAN to stabilize its training and to make the generated i-vector more speaker-specific. Speaker verification experiments on the NIST SRE 2008 “10sec-10sec” condition show that after applying our method, the equal error rate reduced by 11.3% from the conventional i-vector and PLDA system.

©2007 Institute of Science Tokyo All rights reserved.