Home >

news ヘルプ

論文・著書情報


タイトル
和文: 
英文:Generative Adversarial Network Based i-Vector Transformation for Short Utterance Speaker Verification 
著者
和文: ZHANG Jiacen, 井上 中順, 篠田 浩一.  
英文: Jiacen Zhang, Nakamasa Inoue, Koichi Shinoda.  
言語 English 
掲載誌/書名
和文:2018年 秋季研究発表会 講演論文集 
英文:ASJ 2018 Autumn Meeting 
巻, 号, ページ         pp. 1345-1346
出版年月 2018年8月29日 
出版者
和文:一般社団法人 日本音響学会 
英文:Acoustical Society of Japan 
会議名称
和文:日本音響学会 2018年 秋季研究発表会 
英文:2018 Autumn Meeting of the Acoustical Society of Japan 
開催地
和文:大分 
英文:Oita 
ファイル
公式リンク http://www.asj.gr.jp/annualmeeting/index.html
 
アブストラクト i-Vector based text-independent speaker verification (SV) systems often have poor performance with short utterances, because the biased phonetic distribution in a short utterance makes the extracted i-vector unreliable. This paper proposes an i-vector compensation method using a generative adversarial network (GAN), where its generator network is trained to transform an unreliable i-vector from a short utterance into a reliable one which can only be extrated from a long utterance and its discriminator network is trained to determine whether an i-vector is from the generator or from a long utterance. Additionally, we assign two other learning tasks to the GAN to stabilize its training and to make the generated i-vector more speaker-specific. Speaker verification experiments conducted on the NIST SRE 2008 “short2-10sec” and “10sec-10sec” conditions show that our method can help reduce the average equal error rate of the conventional i-vector and PLDA system.

©2007 Institute of Science Tokyo All rights reserved.