Home >

news ヘルプ

論文・著書情報


タイトル
和文:Stacked Recurrent Neural Networkによる桜島噴火予測 
英文: 
著者
和文: 村田剛志, LE HIEP VINH, 井口正人.  
英文: Tsuyoshi MURATA, Hiep Le, 井口正人.  
言語 Japanese 
掲載誌/書名
和文: 
英文: 
巻, 号, ページ 2A1-02        pp. 1-4
出版年月 2018年6月6日 
出版者
和文: 
英文: 
会議名称
和文:2018年度(第32回)人工知能学会全国大会 
英文: 
開催地
和文:鹿児島 
英文: 
公式リンク https://confit.atlas.jp/guide/event/jsai2018/subject/2A1-02/advanced
 
アブストラクト Volcanic eruptions sometimes cause severe damage to many people. This paper explains our attempts for predicting volcanic eruptions from time series sensor data obtained from volcanic monitoring systems (strainmeters)located in Sakurajima. Given the time series data of strainmeters for 100 minutes, our goal is to predict future status of the volcano which is either explosive or not explosive for the 60 minutes immediately after the 100 minutes. We use stacked recurrent neural network for this task, and our method achieves 66.1% F-score on average.We also propose a four-stage warning system that classifies time series sensor data into the following categories:“Non-eruption”, “May-eruption”, “Warning” and “Critial”. The percentage of explosive cases in “Critial” category is 51.9%.

©2007 Institute of Science Tokyo All rights reserved.