Home >

news ヘルプ

論文・著書情報


タイトル
和文: 
英文:Network Embedding Based on a Quasi-Local Similarity Measure 
著者
和文: Liu Xin, Natthawut Kertkeidkachorn, 村田剛志, Kyoung-Sook Kim, Julien Leblay, Steven Lynden.  
英文: Liu Xin, Natthawut Kertkeidkachorn, Tsuyoshi MURATA, Kyoung-Sook Kim, Julien Leblay, Steven Lynden.  
言語 English 
掲載誌/書名
和文: 
英文: 
巻, 号, ページ         pp. 429-440
出版年月 2018年8月28日 
出版者
和文: 
英文:Springer 
会議名称
和文: 
英文:15th Pacific Rim International Conference on Artificial Intelligence (PRICAI 2018) 
開催地
和文: 
英文:Nanjing 
公式リンク https://link.springer.com/chapter/10.1007/978-3-319-97304-3_33
 
DOI https://doi.org/10.1007/978-3-319-97304-3_33
アブストラクト Network embedding based on the random walk and skip-gram model such as the DeepWalk and Node2Vec algorithms have received wide attention. We identify that these algorithms essentially estimate the node similarities by random walk simulation, which is unreliable, inefficient, and inflexible. We propose to explicitly use node similarity measures instead of random walk simulation. Based on this strategy and a new proposed similarity measure, we present a fast and scalable algorithm AA+Emb. Experiments show that AA+Emb outperforms state-of-the-art network embedding algorithms on several commonly used benchmark networks.

©2007 Institute of Science Tokyo All rights reserved.