Home >

news ヘルプ

論文・著書情報


タイトル
和文:構造特徴とグラフ畳み込みを用いたネットワークの半教師あり学習 
英文: 
著者
和文: 立花誠人, 村田剛志.  
英文: Makoto Tachibana, Tsuyoshi MURATA.  
言語 Japanese 
掲載誌/書名
和文:人工知能学会研究会資料 
英文: 
巻, 号, ページ SIG-KBS-B802        pp. 20-25
出版年月 2018年11月23日 
出版者
和文:人工知能学会 
英文: 
会議名称
和文:第115回人工知能学会知識ベースシステム研究会 
英文: 
開催地
和文:神奈川 
英文: 
公式リンク https://jsai.ixsq.nii.ac.jp/ej/?action=pages_view_main&active_action=repository_view_main_item_detail&item_id=9541&item_no=1&page_id=13&block_id=23
 
アブストラクト Since several types of data can be represented as graphs, there has been a demand for generalizing neural network models for graph data. Graph convolution is a recent scalable method for performing deep feature learning on attributed graphs by aggregating local node information over multiple layers. Such layers only consider attribute information of node neighbors in the forward model and do not incorporate knowledge of global network structure in the learning task. In this paper, we present a scalable semi-supervised learning method for graph-structured data which considers not only neighbors information, but also the global network structure. In our method, we add a term preserving the network structural features such as centrality to the objective function of Graph Convolutional Network and train for both node classification and network structure preservation simultaneously. Experimental results showed that our method outperforms state-of-the-art baselines for the node classification tasks in the sparse label regime.
受賞情報 人工知能学会研究会優秀賞

©2007 Institute of Science Tokyo All rights reserved.