Home >

news ヘルプ

論文・著書情報


タイトル
和文: 
英文:How Much Topological Structure Is Preserved by Graph Embeddings? 
著者
和文: Liu Xin, Chenyi Zhuang, 村田剛志, Kyoung-Sook Kim, Natthawut Kertkeidkachorn.  
英文: Liu Xin, Chenyi Zhuang, Tsuyoshi MURATA, Kyoung-Sook Kim, Natthawut Kertkeidkachorn.  
言語 English 
掲載誌/書名
和文: 
英文:Computer Science and Information Systems 
巻, 号, ページ Vol. 16    No. 2    pp. 597-614
出版年月 2019年6月1日 
出版者
和文: 
英文: 
会議名称
和文: 
英文: 
開催地
和文: 
英文: 
公式リンク http://www.comsis.org/archive.php?show=pprwims-8668
 
DOI https://doi.org/10.2298/CSIS123456789X
アブストラクト Graph embedding aims at learning representations of nodes in a low dimensional vector space. Good embeddings should preserve the graph topological structure. To study how much such structure can be preserved, we propose evaluation methods from four aspects: 1) How well the graph can be reconstructed based on the embeddings, 2) The divergence of the original link distribution and the embedding-derived distribution, 3) The consistency of communities discovered from the graph and embeddings, and 4) To what extent we can employ embeddings to facilitate link prediction. We find that it is insufficient to rely on the embeddings to reconstruct the original graph, to discover communities, and to predict links at a high precision. Thus, the embeddings by the state-of-the-art approaches can only preserve part of the topological structure.

©2007 Institute of Science Tokyo All rights reserved.