Home >

news ヘルプ

論文・著書情報


タイトル
和文: 
英文:Least-squares two-sample test 
著者
和文: 杉山将, 鈴木大慈, 伊藤勇太, 金森敬文, 木村学.  
英文: Masashi Sugiyama, Taiji Suzuki, Yuta Itoh, Takafumi Kanamori, Manabu Kimura.  
言語 English 
掲載誌/書名
和文: 
英文:Neural Networks 
巻, 号, ページ Vol. 24    No. 7    pp. 735-751
出版年月 2011年9月 
出版者
和文: 
英文:ELSEVIER 
会議名称
和文: 
英文: 
開催地
和文: 
英文: 
DOI https://doi.org/10.1016/j.neunet.2011.04.003
アブストラクト The goal of the two-sample test (a.k.a. the homogeneity test) is, given two sets of samples, to judge whether the probability distributions behind the samples are the same or not. In this paper, we propose a novel non-parametric method of two-sample test based on a least-squares density ratio estimator. Through various experiments, we show that the proposed method overall produces smaller type-II error (i.e., the probability of judging the two distributions to be the same when they are actually different) than a state-of-the-art method, with slightly larger type-I error (i.e., the probability of judging the two distributions to be different when they are actually the same).

©2007 Institute of Science Tokyo All rights reserved.