Home >

news ヘルプ

論文・著書情報


タイトル
和文: 
英文:Model Based Observation Localization Weighting Function for Amazon Mainstream 
著者
和文: RevelNilanka Menaka Tisho Kumar, 山崎大, 鼎信次郎.  
英文: Menaka Revel, Dai Yamazaki, Shinjiro Kanae.  
言語 English 
掲載誌/書名
和文:土木学会論文集B1(水工学) 
英文:Annual journal of Hydraulic Engineering, JSCE 
巻, 号, ページ 74    5    p. 157-162
出版年月 2018年11月 
出版者
和文:公益社団法人土木学会 
英文: 
会議名称
和文:第63回水工学講演会 
英文:63th Annual Meeting of Hydraulic Engineering 
開催地
和文:北海道札幌市 
英文:Hokkaido, Sapporo 
公式リンク https://www.jstage.jst.go.jp/article/jscejhe/74/5/74_I_157/_article/-char/ja/
 
DOI https://doi.org/10.2208/jscejhe.74.5_I_157
アブストラクト Data assimilation techniques are becoming popular in estimating hydraulic variables in ungauged basins with the recent advancements in the satellite technology. The Local Ensemble Transformation Kalman Filter (LETKF), which limits the assimilation domain by a “local patch”, is an efficient method for a global-scale data assimilation, but the optimization of the size and weighting function of the local patch is still challenging especially for river hydrodynamic models. Here we propose a method to estimate a reasonable local patch parameters, by fitting a Gaussian semi-variogram to the transformed Water Surface Elevation (WSE) data and defining the autocorrelation length for each river pixel. WSE simulated by CaMa-Flood hydrodynamic model was de-trended, seasonality removed and standardized to make the data suitable for semi-variogram analysis. A case study over the Amazon mainstem suggested that the auto-correlation lengths for upstream and downstream of Obidos GRDC location were derived respectively as 1886.69 km and 688.66 km. The semi-variogram analysis indicated that the river pixels of entire mainstream of the Amazon are correlated together. The estimated auto-correlation length and weighing function could be useful to determine the optimum parameters of the LETKF local patch.

©2007 Institute of Science Tokyo All rights reserved.