Home >

news ヘルプ

論文・著書情報


タイトル
和文: 
英文:Quasi-Newton Adversarial Attacks on Speaker Verification Systems 
著者
和文: Goto Keita, 井上中順.  
英文: Keita Goto, Nakamasa Inoue.  
言語 English 
掲載誌/書名
和文: 
英文:2020 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC) 
巻, 号, ページ         pp. 527-531
出版年月 2020年12月31日 
出版者
和文: 
英文:IEEE 
会議名称
和文: 
英文:Asia-Pacific Signal and Information Processing Association Annual Summit and Conference 2020(APSIPA ASC) 
開催地
和文: 
英文: 
公式リンク http://www.apsipa.org/proceedings/2020/APSIPA-ASC-2020.html
 
アブストラクト This paper proposes a framework for generating adversarial utterances for speaker verification systems. Our main idea is to formulate an optimization problem to generate adversarial utterances that fool speaker verification models and solve it by a second-order optimization method. We first present our algorithm, which uses the first-order Gauss-Newton method, and then extend it to second-order Quasi-Newton methods. Our experiments on the VoxCeleb 1 dataset show that the proposed method can fool a speaker verification system with a smaller degree of perturbations than those of conventional methods. We also show that second-order optimization methods are effective for finding small perturbations.

©2007 Institute of Science Tokyo All rights reserved.