Home >

news ヘルプ

論文・著書情報


タイトル
和文: 
英文:Quantitative estimate of protein-protein interaction targeting drug-likeness 
著者
和文: 小杉 孝嗣, 大上 雅史.  
英文: Takatsugu Kosugi, Masahito Ohue.  
言語 English 
掲載誌/書名
和文:In Proceedings of The 18th IEEE International Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB 2021) 
英文:In Proceedings of The 18th IEEE International Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB 2021) 
巻, 号, ページ         pp. 1-8
出版年月 2021年10月18日 
出版者
和文: 
英文:IEEE 
会議名称
和文: 
英文:2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB) 
開催地
和文:メルボルン 
英文:Melbourne 
ファイル
公式リンク https://ieeexplore.ieee.org/document/9562931
 
DOI https://doi.org/10.1109/CIBCB49929.2021.9562931
アブストラクト The quantification of drug-likeness is very useful for screening drug candidates. The quantitative estimate of drug-likeness (QED) is the most commonly used quantitative drug efficacy assessment method proposed by Bickerton et al. However, QED is not considered suitable for screening compounds that target protein-protein interactions (PPI), which have garnered significant interest in recent years. Therefore, we developed a method called the quantitative estimate of protein-protein interaction targeting drug-likeness (QEPPI), specifically for early-stage screening of PPI-targeting compounds. QEPPI is an extension of the QED method for PPI-targeting drugs and developed using the QED concept, involving modeling physicochemical properties based on the information available on the drug. QEPPI models the physicochemical properties of compounds that have been reported in the literature to act on PPIs. Compounds in iPPI-DB, which comprises PPI inhibitors and stabilizers, and FDA-approved drugs were evaluated using QEPPI. The results showed that QEPPI is more suitable for the early screening of PPI-targeting compounds than QED. QEPPI was also considered an extended concept of "Rule-of-Four" (RO4), a PPI inhibitor index proposed by Morelli et al. We have been able to turn a discrete value indicator into a continuous value indicator. To compare the discriminatory performance of QEPPI and RO4, we evaluated their discriminatory performance using the datasets of PPI-target compounds and FDA-approved drugs using F-score and other indices. Results of the F-score of RO4 and QEPPI were 0.446 and 0.499, respectively. QEPPI demonstrated better performance and enabled quantification of drug-likeness for early-stage PPI drug discovery. Hence, it could be used as an initial filter for efficient screening of PPI-targeting compounds, which has been difficult in the past.

©2007 Institute of Science Tokyo All rights reserved.