Home >

news ヘルプ

論文・著書情報


タイトル
和文: 
英文:Disentangling Latent Groups of Factors 
著者
和文: 井上 中順, 山田 陵太, 川上 玲, 佐藤 育郎.  
英文: Nakamasa Inoue, Ryota Yamada, Rei Kawakami, Ikuro Sato.  
言語 English 
掲載誌/書名
和文: 
英文:Proc. 2021 IEEE International Conference on Image Processing (ICIP) 
巻, 号, ページ        
出版年月 2021年9月 
出版者
和文: 
英文:IEEE 
会議名称
和文: 
英文:2021 IEEE International Conference on Image Processing 
開催地
和文: 
英文: 
公式リンク https://ieeexplore.ieee.org/document/9506505
 
アブストラクト This paper proposes a framework for training variational autoencoders (VAEs) for image distributions that have latent groups of factors. Our key idea is to introduce a mechanism to predict the factor group an image belongs to while simultaneously disentangling factors in it. More specifically, we propose an architecture consisting of three components: an encoder, a decoder, and a factor-group prediction header. The first two components are trained with a VAE objective, and the last one is trained with the proposed algorithm using the loss of unsupervised contrastive learning. In experiments, we designed a task in which more than one group of factors were entangled by combining multiple datasets and demonstrated the effectiveness of the proposed framework. The Mutual Information Gap score was improved from 0.089 to 0.125 on a merged dataset of Color-dSprites, 3DShapes, and MPI3D.

©2007 Institute of Science Tokyo All rights reserved.