Home >

news ヘルプ

論文・著書情報


タイトル
和文:Enhancing Ligand Property and Activity Prediction and Interpretation Using Multiple Molecular Graph Representations 
英文:Enhancing Ligand Property and Activity Prediction and Interpretation Using Multiple Molecular Graph Representations 
著者
和文: Kengkanna Apakorn, 大上 雅史.  
英文: Apakorn Kengkanna, Masahito Ohue.  
言語 English 
掲載誌/書名
和文:研究報告バイオ情報学(BIO) 
英文: 
巻, 号, ページ 2023-BIO-73    35    1-4
出版年月 2023年3月2日 
出版者
和文:情報処理学会 
英文:ISPJ 
会議名称
和文: 
英文: 
開催地
和文: 
英文: 
公式リンク https://ipsj.ixsq.nii.ac.jp/ej/?action=pages_view_main&active_action=repository_view_main_item_detail&item_id=225258&item_no=1&page_id=13&block_id=8
 
アブストラクト Graph neural networks (GNNs) are effective at predicting compound properties and activities, but they have two limitations: molecular representation and interpretability. Atom-based molecular graphs are commonly used to represent molecules, but they may not capture important substructures/functional groups that highly impact molecular properties. Interpretability is also important as it can provide scientific insight for optimization, but GNNs are complex and less interpretable. This research introduces techniques to create alternative reduced molecular graph representations that integrate higher-level information and support interpretation. Experiments are conducted on pharmaceutical endpoint datasets, and attention mechanism is used to identify significant substructures. Results show that combining multiple graph representations gives promising performance and provides interpretation aligning with background knowledge. This research could facilitate model understanding and applications in drug discovery.

©2007 Institute of Science Tokyo All rights reserved.