Home >

news ヘルプ

論文・著書情報


タイトル
和文:3次元スカラー波動問題に対する陰的Runge-Kutta法を用いた演算子積分時間領域高速多重極境界要素法 
英文: 
著者
和文: 丸山 泰蔵, 斎藤隆泰, 廣瀬壮一.  
英文: Taizo Maruyama, Takahiro Saitoh, SOHICHI HIROSE.  
言語 Japanese 
掲載誌/書名
和文:土木学会論文集A2(応用力学) 
英文: 
巻, 号, ページ Vol. 69    No. 2    pp. I175-I185
出版年月 2014年3月 
出版者
和文:公益社団法人 土木学会 
英文: 
会議名称
和文: 
英文: 
開催地
和文: 
英文: 
アブストラクト This paper presents an implicit Runge-Kutta (IRK) based convolution quadrature time-domain fast multipole boundary element method (CQ-FMBEM). Application of a convolution quadrature method (CQM) to a time-domain boundary element method (BEM), which is called CQ-BEM, can improve numerical stability of time-stepping procedure. In recent researches, the IRK based CQ-BEM showed better performance than the conventional linear multistep based one regarding accuracy. However, the IRK based CQ-BEM requires more computational time and memory. Therefore, in this paper, the fast multipole method (FMM) is applied to the IRK based CQ-BEM for 3-D scalar wave propagation problems. The formulation of the IRK based CQ-BEM and the application of the FMM are described. The accuracy and computational efficiency of the proposal method are compared with the linear multistep based CQ-FMBEM by solving some numerical examples.

©2007 Institute of Science Tokyo All rights reserved.