Home >

news ヘルプ

論文・著書情報


タイトル
和文: 
英文:A Multimodal Model for Personality Recognition through Speech 
著者
和文: Nah Nathania, 土屋 ゆり, 越仲 孝文, 篠田 浩一.  
英文: Nathania Nah, Yuri Tsuchiya, Takafumi Koshinaka, Koichi Shinoda.  
言語 English 
掲載誌/書名
和文:日本音響学会講演論文集 
英文: 
巻, 号, ページ vol. 150        pp. 1323-1324
出版年月 2023年9月 
出版者
和文:一般社団法人日本音響学会 
英文:Acoustical Society of Japan 
会議名称
和文:日本音響学会 第150回(2023年秋季)研究発表会 
英文: 
開催地
和文:愛知県名古屋市 
英文: 
ファイル
公式リンク chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://acoustics.jp/cms/wp_asj/wp-content/uploads/003_2023autumn_info.pdf
 
アブストラクト Exploring the field of affective computing is important for understanding how humans think and interact with each other. Personality computing focuses on methods of performing the automatic detection of human traits which compose their personality. Using the Five Factor Model of Personality as a measure to describe a subject's personality, temperament, and psyche, this work employs a multimodal model to perform automatic personality recognition on speech. We employ the use of speaker and phone disentanglement in speech representation learning, a technique known to be effective in emotion recognition, to predict scores for personality traits trained on the UDIVA dataset and outperform current methods that use visual features.

©2007 Institute of Science Tokyo All rights reserved.