|
廣瀬一俊 研究業績一覧 (16件)
論文
-
Kazutoshi Hirose,
Jaehoon Yu,
Kota Ando,
Yasuyuki Okoshi,
Angel Lopez Garcia-Arias,
Junnosuke Suzuki,
Thiem Van Chu,
Kazushi Kawamura,
Masato Motomura.
Hiddenite: 4K-PE Hidden Network Inference 4D-Tensor Engine Exploiting On-Chip Model Construction Achieving 34.8-to-16.0TOPS/W for CIFAR-100 and ImageNet,
International Solid-State Circuits Conference,
Feb. 2022.
-
Junnosuke Suzuki,
Tomohiro Kaneko,
Kota Ando,
Kazutoshi Hirose,
Kazushi Kawamura,
Thiem Van Chu,
Masato Motomura,
Jaehoon Yu.
ProgressiveNN: Achieving Computational Scalability with Dynamic Bit-Precision Adjustment by MSB-first Accumulative Computation,
International Journal of Networking and Computing,
July 2021.
-
Kazutoshi Hirose,
Shinya Takamaeda-Yamazaki,
Jaehoon Yu,
Masato Motomura.
Selective Fine-Tuning on a Classifier Ensemble: Realizing Adaptive Neural Networks With a Diversified Multi-Exit Architecture,
IEEE Access,
Vol. 9,
pp. 6179-6187,
Jan. 2021.
-
Kodai Ueyoshi,
Ryota Uematsu,
Takumi Kudo,
Masayuki Ikebe,
Tetsuya Asai,
Shinya Takamaeda-Yamazaki,
Kota Ando,
Kodai Ueyoshi,
Yuka Oba,
Kazutoshi Hirose,
Ryota Uematsu,
Takumi Kudo,
Masayuki Ikebe,
Tetsuya Asai,
Shinya Takamaeda-Yamazaki,
Masato Motomura.
Dither NN: hardware/algorithm co-design for accurate quantized neural networks,
IEICE Transactions on Information and Systems,
Vol. E102-D,
No. 12,
Dec. 2019.
-
Ueyoshi K.,
Ando K.,
Hirose K,
Takamaeda-Yamazaki S.,
Hamada M.,
Kurorda T.,
Motomura M..
QUEST: Multi-Purpose Log-Quantized DNN Inference Engine Stacked on 96-MB 3D SRAM Using Inductive Coupling Technology in 40-nm CMOS,
IEEE Journal of Solid-State Circuits,
Vol. 54,
No. 1,
Jan. 2019.
国際会議発表 (査読有り)
-
Yasuyuki Okoshi,
Angel Lopez Garcia-Arias,
Kazutoshi Hirose,
Kota Ando,
Kazushi Kawamura,
Thiem Van Chu,
Masato Motomura,
Jaehoon Yu.
Multicoated Supermasks Enhance Hidden Networks,
International Conference on Machine Learning,
July 2022.
-
Kota Ando,
Jaehoon Yu,
Kazutoshi Hirose,
Hiroki Nakahara,
Kazushi Kawamura,
Thiem Van Chu,
Masato Motomura.
Edge Inference Engine for Deep & Random Sparse Neural Networks with 4-bit Cartesian-Product MAC Array and Pipelined Activation Aligner,
Hot Chips,
Aug. 2021.
-
Junnosuke Suzuki,
Kota Ando,
Kazutoshi Hirose,
Kazushi Kawamura,
Thiem Van Chu,
Masato Motomura,
Jaehoon Yu.
ProgressiveNN: Achieving Computational Scalability without Network Alteration by MSB-first Accumulative Computation,
International Symposium on Computing and Networking (CANDAR),
Nov. 2020.
国内会議発表 (査読なし・不明)
-
平山 侑樹,
廣瀬 一俊,
安藤 洸太,
植吉 晃大,
浅井 哲也,
本村 真人,
高前田 伸也.
ベイジアンNNのHW実装に向けたサンプリング手法の検討,
電子情報通信学会研究会報告CPSY2019-35,
July 2019.
-
廣瀬 一俊,
浅井 哲也,
本村 真人,
高前田 伸也.
エッジ環境におけるニューラルネットワーク学習軽量化手法の検討,
電子情報通信学会研究会報告CPSY2019-7,
June 2019.
-
池田 泰我,
植吉 晃大,
安藤 洸太,
廣瀬 一俊,
浅井 哲也,
本村 真人,
高前田 伸也.
効率的なDNN計算のための無効ニューロン予測手法の評価,
情報処理学会システム・アーキテクチャ研究会,
June 2019.
-
植吉 晃大,
池田 泰我,
安藤 洸太,
廣瀬 一俊,
浅井 哲也,
高前田 伸也,
本村 真人.
無効ニューロン予測によるDNN計算効率化手法,
電子情報通信学会研究会報告RECONF2019-18,
May 2019.
-
7. 安藤 洸太,
植吉 晃大,
大羽 由華,
工藤 巧,
池辺 将之,
浅井 哲也,
高前田 伸也,
安藤 洸太,
植吉 晃大,
大羽 由華,
廣瀬 一俊,
工藤 巧,
池辺 将之,
浅井 哲也,
高前田 伸也,
本村 真人.
Dither NN: 画像処理から着想を得た組込み向け量子化ニューラルネットワークの精度向上手法,
電子情報通信学会研究会報告RECONF2019-14,
May 2019.
学位論文
-
A Study of Redundancy-Aware Neural Network Model Constructions: From Training Techniques to Architectural Realization,
Summary,
Doctor (Engineering),
Tokyo Institute of Technology,
2022/03/26,
-
A Study of Redundancy-Aware Neural Network Model Constructions: From Training Techniques to Architectural Realization,
Exam Summary,
Doctor (Engineering),
Tokyo Institute of Technology,
2022/03/26,
-
A Study of Redundancy-Aware Neural Network Model Constructions: From Training Techniques to Architectural Realization,
Thesis,
Doctor (Engineering),
Tokyo Institute of Technology,
2022/03/26,
[ BibTeX 形式で保存 ]
[ 論文・著書をCSV形式で保存
]
[ 特許をCSV形式で保存
]
|