|
伴兼弘 研究業績一覧 (14件)
- 2024
- 2023
- 2022
- 2021
- 2020
- 全件表示
論文
-
Ban T,
Ohue M,
Akiyama Y..
NRLMFβ: Bata-distribution-rescored Neighborhood Regularized Logistic Matrix Factorization for Improving Performance of Drug–Target Interaction Prediction,
Biochemistry and Biophysics Reports,
Elsevier,
Volume 18,
July 2019.
公式リンク
-
Ban T,
Masahito O,
Yutaka Akiyama.
Multiple grid arrangement improves ligand docking with unknown binding sites: Application to the inverse docking problem,
Computational Biology and Chemistry,
Volume 73,
Page 139-146,
Apr. 2018.
公式リンク
-
Shuntaro Chiba,
Kazuyoshi Ikeda,
Takashi Ishida,
M. Michael Gromiha,
Y-h. Taguchi,
Mitsuo Iwadate,
Hideaki Umeyama,
Kun-Yi Hsin,
Hiroaki Kitano,
Kazuki Yamamoto,
Nobuyoshi Sugaya,
Koya Kato,
Tatsuya Okuno,
George Chikenji,
Masahiro Mochizuki,
Nobuaki Yasuo,
Ryunosuke Yoshino,
Keisuke Yanagisawa,
Tomohiro Ban,
Reiji Teramoto,
Chandrasekaran Ramakrishnan,
A. Mary Thangakani,
D. Velmurugan,
Philip Prathipati,
Junichi Ito,
Yuko Tsuchiya,
Kenji Mizuguchi,
Teruki Honma,
Takatsugu Hirokawa,
Yutaka Akiyama,
Masakazu Sekijima.
Identification of potential inhibitors based on compound proposal contest: Tyrosine-protein kinase Yes as a target,
Scientific Reports,
Vol. 5,
No. 17209,
Nov. 2015.
国際会議発表 (査読有り)
-
Ban T,
Ohue M,
Akiyama Y.
Efficient Hyperparameter Optimization by Using Bayesian Optimization for Drug-Target Interaction Prediction,
In Proceedings of the 7th IEEE International Conference on Computational Advances in Bio and Medical Sciences (ICCABS 2017),
IEEE,
Oct. 2017.
-
Ohue M,
Yamazaki T,
Ban T,
Akiyama Y.
Link Mining for Kernel-based Compound-Protein Interaction Predictions Using a Chemogenomics Approach,
Intelligent Computing Theories and Application (In Proceedings of ICIC2017, Lecture Notes in Computer Science),
Lecture Notes in Computer Science,
Springer, Cham,
Vol. 10362,
pp. 549-558,
Aug. 2017.
公式リンク
-
Ban, T.,
Ishida, T.,
Akiyama, Y..
Improvement of a conformational search on protein-ligand docking based on optimal arrangement of multiple small search grids,
The 2014 International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA'14),
July 2014.
国際会議発表 (査読なし・不明)
国内会議発表 (査読なし・不明)
-
伴 兼弘,
大上 雅史,
秋山 泰.
Multiple Grids Arrangement for Improving Conformational Search of Protein-Ligand Docking and Its Application to Inverse Docking Problem,
第21回創剤フォーラム若手研究会,
Nov. 2015.
-
Tomohiro Ban,
Masahito Ohue,
Yutaka Akiyama.
Multiple Grids Arrangement for Ligand Docking and Its Application to Inverse Docking Problem,
IIBMP2015,
Oct. 2015.
-
伴兼弘,
石田貴士,
秋山泰.
蛋白質-化合物ドッキングにおけるグリッドの分散配置による配座探索の改良,
第37回バイオ情報学研究会,
情報処理学会研究報告,
vol. 2014-BIO-37,
no. 4,
pp. 1-7,
Mar. 2014.
-
石田貴士,
蓮実梢,
伴兼弘,
秋山泰.
NTDs創薬ターゲットタンパク質選択のためのデータベースiNTRODBの開発,
第54回日本熱帯医学会大会,
No. p2-53,
Oct. 2013.
学位論文
-
Improved Matrix Factorization Model for Drug-Target Prediction and Its Enhancement Techniques,
Thesis,
Doctor (Engineering),
Tokyo Institute of Technology,
2019/03/26,
-
Improved Matrix Factorization Model for Drug-Target Prediction and Its Enhancement Techniques,
Exam Summary,
Doctor (Engineering),
Tokyo Institute of Technology,
2019/03/26,
-
薬剤標的タンパク質予測における行列因子分解モデルの改良とその拡張,
論文要旨,
博士(工学),
東京工業大学,
2019/03/26,
[ BibTeX 形式で保存 ]
[ 論文・著書をCSV形式で保存
]
[ 特許をCSV形式で保存
]
|